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SUMMARY:  Permeability is fundamental to an accurate simulation of mold-filling in liquid 
composite molding (LCM) technologies (such as RTM) that are used for manufacturing polymer 
composites. In this paper, unit cells representing the micro-structure of a biaxial stitched fiber 
mat are used by the 3D finite element based CFD simulation to estimate numerical permeability. 
Stokes and Brinkman equations are employed to model the saturated flow in the inter- and intra-
tow regions, respectively, of the non-crimp fiber mat with a dual-scale pore structure. Two 
different unit cells are identified for the mat: one bigger and true to the mat architecture, and the 
other smaller but inaccurate, though including the essence of tow distribution. The experimental 
permeability of the mat is measured using the 1D flow experiment. A comparison of the 
numerical and experimental permeabilities reveals that the permeability estimated using the big 
(true) unit cell is less close to the real value as compared to the permeability estimated using the 
small (apparent) unit cell. Explanations such as nesting between the plies, tow deformation, and 
overlooking of stitches in the flow simulation, can be used to explain the larger error witnessed in 
the numerical permeability obtained from the geometrically accurate, big unit-cell. CFD 
simulation in the small unit cell is shown to be a quicker, less difficult, and paradoxically more 
accurate way of estimating the mat permeability. 
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INTRODUCTION 
 
Liquid Composite Molding (LCM) processes such as Resin Transfer Molding (RTM), vacuum 
assisted resin transfer molding (VARTM), and Seemann Composites Resin Infusion Molding 
Process (SCRIMP), are important methods for manufacturing polymer composites. Since LCM 
processes involve many processing parameters, numerical mold-filling simulations are essential 
for optimizing LCM mold designs and processing [1]. Darcy’s law, which relates the volume-
averaged resin velocity to the gradient of pore-averaged pressure, has been widely used to model 
the momentum transport phenomena of fluid flow through fibrous porous media in LCM [2-3]. 
For a successful simulation, the permeability of the fiber mats has to be accurately characterized 
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so that the resin velocity in preforms, and hence the mold fill-time, can be accurately predicted. 
Various experimental measurement techniques have been developed to measure the 
permeabilities of fibrous media but most widely used are the 1-D flow and the radial flow based 
techniques [4-6]. In recent years, Computational Fluid Dynamics (CFD) has been found to be 
very useful in predicting the permeability of different kinds of fibrous preforms [7-8]. The 
accuracy of this method depends on the construction of a unit cell representing the meso-scopic 
structure of the fiber mats. In this study, two different unit cells are identified in the structure of a 
biaxial stitched fiber mat [9]. A simulation based on FEM is developed to solve the Stokes and 
Brinkman equations which model the saturated flow in the inter- and intra-tow regions of the unit 
cell, respectively. Based on the CFD simulation, the effective permeabilities along two main 
directions are estimated using Darcy’s law.  
 
 

GOVERNING EQUATIONS AND SIMULATION 
 
For steady Stokes flows through the inter-tow region, the fluid motion is governed by the 
continuity and Stokes equations, which are expressed in vector form as 
 
                                                0=⋅∇ u    (1)    and     u2∇=∇ μp      (2) 
 
where u is velocity, p is pressure, and μ is fluid viscosity. ∇ is the gradient operator. The 
Brinkman equation can be used to model the flow through the intra-tow region of the unit cell. 
The Brinkman equation is actually the volume averaged momentum balance equation that can be 
described as 
 

  0' 12 =−∇+∇− − uKu μμfp           (3) 
 
where ‹u› is the volume averaged velocity, ‹p›f

 is the pore average pressure, K is the permeability 
tensor of the tow, and μ′ represents the effective viscosity. The longitudinal (along the fibers) and 
transverse (across the fibers) permeabilities of the fiber tow are estimated using the equations 
proposed by Gebart [10].  
 
A 3D finite element code is developed to simulate the steady flow through the inter-tow gaps and 
porous tows within a unit cell. The mixed finite element model and consistent penalty method are 
used to solve the governing equations [12]. The velocity and pressure are primitive variables in 
our FE formulation. The eight-node isoparametric trilinear element Q1Q0 with a piecewise 
constant discontinuous pressure approximation is used in the simulation [12]. One important 
issue involved in the simulation of flow through the tow and gap interface is the boundary 
conditions (b.c.) at this interface between the clear-fluid and porous regions. Our other study [11] 
shows that for the low or moderate porosities found in fiber tows, the most commonly considered 
Beaver & Joseph slip-velocity b.c., the stress-continuity b.c., and Whitaker’s stress-jump b.c. 
lead to almost identical results. So for the simplicity of FE formulation, the velocity and stress 
are assumed to be continuous at the tow-gap interface in this study.  



 

 
UNIT CELLS  

 
In the present study, permeability of a biaxial stitched mat from Owens Corning is measured 
using the 1D flow experiment. The biaxial mat has two layers of stitched fiber tows oriented in 
mutually perpendicular directions (Fig. 1A). Some unique structural characteristic of this type of 
biaxial mat is as follows. In both the z and x directions (henceforth z and x directions are referred 
to as 00 and 900, respectively), one can identify clusters consisting of five parallel tows each, 
while the clusters themselves are separated by thinner tows, running in the middle of meso-scopic 
gaps. Therefore, a repeated unit cell marked as a red square in Fig. 1A, and with five tows in each 
direction, can be easily identified. Another smaller unit, which can recreate the unit cell by 
repeating, can be identified within the unit cell as well. Unlike the previous unit cell, there is only 
one tow in both directions in this smaller ‘unit cell’. In order to distinguish between the two unit 
cells, we refer the former as the big (true) unit cell and the latter as the small (apparent) unit cells. 
The geometrical representation of tows in the big unit cell is shown in Fig. 1B.  
 
The finite element models of the big and small unit cells are shown in Fig. 2 and Fig. 3. The sizes 
of the big and small unit cells are 2.16 cm × 2.07 cm × 0.0787 cm and 0.391 cm × 0.382 cm × 
0.0787 cm, respectively. The FE model of the big unit cell contains 125,952 nodes and 114,000 
hexahedron elements, whereas the small unit cell has 4,921 nodes and 4,032 elements. Since the 
distance between tows within a cluster of five tows is smaller than that between the clusters, 
which means that the gap region of the big unit cell is larger than that of the small unit cell, we 
expect the numerical permeability predicted using the big unit cell to be higher than that using 
the small unit cell. However, though the small unit-cell FE model does not reflect the structure of 
biaxial mats accurately, it does contain much less number of nodes and elements than the big unit 
cell, which means it can give us a much quicker estimation of permeability of the biaxial fiber 
mat. 
 
Computed from the permeability model proposed by Gebart [10], the longitudinal and transverse 
permeabilities of the tows oriented in the 00 direction are 1.23×10-9 cm2 and 2.48×10-10 cm2, 
respectively. The longitudinal and transverse permeabilities of the tows oriented in the 900 
direction are 1.8×10-8 cm2 and 3.73×10-9 cm2, respectively. (The porosity of tows along the 00 
and 900 directions is estimated as 0.2 and 0.15, respectively. We assume the fibers within the 
tows to be arranged in a periodic hexagonal form. The fiber diameter is 15 µm.) The pressure b.c. 
of 100 Pa and 0 Pa are applied on two mutually opposite surfaces of a unit cell along the flow 
direction to drive the 00 or 900 direction flows. Symmetric b.c.s are imposed on the remaining 
surfaces of unit cell. Then the effective permeability along 00 or 900 directions can be calculated 
by using in Darcy’s law the average velocity through the unit cell and the applied pressure 
gradient.  

 
 

RESULTS, DISCUSSION AND CONCLUSION 
 
For the big unit cell, the pressure and velocity contours for 00 and 900 flows are shown in Fig. 4 
and 5, respectively. For the small unit cell, the pressure and velocity contours for 00 flows are 
shown in Fig. 6. Based on these flow simulations within the two unit cells, the effective 
permeabilities along the 00 and 900 directions estimated using Darcy’s law are listed in Table 1. 



 

As expected, the permeability estimated using the small unit cell is smaller than the one obtained 
from the big unit cell because of the larger gaps in the latter. Moreover the numerical 
permeabilities obtained from both the small as well as big unit cells are close to the experimental 
results. Since flow simulation with the small unit cell can result in a significant saving of 
computational time, the choice of using the small unit cell is appropriate despite its less accurate 
representation of the mat architecture. 

  

Fig. 1  (A) A photo of the biaxial fiber mat. (B) The big unit cell showing the two fiber-tow 
directions. 

 

 

Fig. 2  Finite element mesh for the big (true) unit cell: (A) the whole unit cell; (B) just the fiber 
tows. 

 

 
Fig. 3  Finite element mesh for the small (apparent) unit cell: (A) the whole unit cell; (B) just the 

fiber tows. 
 
 



 

It is also clear from Table 1 that the numerical permeabilities obtained from the big unit cell are 
higher than the experimental permeabilities. We think there can be several explanations. First, the 
nesting of fiber mats in an LCM mold is very common. So the nesting in a stack of the biaxial 
fiber mats during the 1D flow experiment decreases the cross-section of meso-scale flow 
channels between tow clusters, thereby reducing the big unit-cell permeability. Second, the fiber 
mats are not rigid and often deform during packing or under the fluid pressure. The deformation 
of fiber mats changes the channels, which definitely has a bearing on the mat permeability. 
Lastly, there are threads stitching the fiber tows together in the biaxial mat. We ignored them 
while 

 

 

Fig. 4  Flow along the 00 direction of the big unit cell: (A) pressure contours; (B) velocity 
contours.  

 
 

 
Fig. 5  Flow along the 900 direction of the big unit cell: (A) pressure contours; (B) velocity 

contours. 

 
 

 
Fig. 6  Flow along the 00 direction of the small unit cell: (A) pressure contours; (B) velocity 

contours. 
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constructing the unit cell FE models. These impermeable threads create narrow ‘throats’ in the 
inter-tow channels and thus decrease the permeability of fiber mats. Although these factors 
complicate the permeability prediction using unit cells, we feel it is still one of the most effective 
and accurate approach in predicting the permeability of fiber mats. 

Table 1  Comparison of the numerical and experimental permeabilities of the biaxial 
stitched mat 

 
 K0

0 (×10-9 m2)  K90
0(×10-9 m2) 

Small unit cell 1.786 1.279 
Big unit cell 3.037 2.514 
Experimental 2.036 1.615 
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